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In [i, 2] there is a discussion of the stability over finite and infinite time intervals 
for compressed expanding inhomogeneously aging viscoelastic rods. Stability is understood 
in the sense of stability of motion for a dynamic system after Chetaev and Lyapunov. It has 
been shown that the rod growth mechanism and the growth characteristics have substantial ef- 
fects on the strain-state parameters and on the critical time. 

Here we examine the stability of a compressed expanding thin-walled shell in which the 
viscoelastic material shows aging. The equations of state are described by ones from the 
theory of viscoelasticity for inhomogeneously aging bodies [3]. The shell is subject to its 
own weight and to external loads varying in time. 

i. Expanding-Shell Model. Consider a thin-walled shell whose geometrical parameters 
vary in time because the material grows. We distinguish a surface S in the shell, which may 
be the median surface or equidistant from it. The positions of points in the shell are defined 
by the coordinates ~i, z (i = i, 2), with the curvilinear coordinates ~i reckoned along the 
lines of principal curvature of surface S, while z is reckoned along the normal to that sur- 
face directed toward the centers of positive curvature in the coordinate surface (from the 
concave side of S if it is elliptical). 

We assume that material points with coordinates ~i are first generated on S, after which 
the walls of the shell are formed. At each instant, the shell is bounded by the edge F, which 
consists of individual parts ri, where ~i = const (i = i, 2). If S is the internal (external) 
surface of the shell, growth on the wall occurs along the exterior (interior) normal. If, 
on the other hand, S occupies an intermediate position, the wall grows along the interior 
and exterior normals. 

This mechanism does not exclude the case where part of the wall thickness is generated 
at the same time as the corresponding part of S, while the subsequent growth is along the 
exterior or interior normal, or the two simultaneously. The last case occurs, for example, 
in strengthening (reconstructing) shells. 

2. Equations of Motion for a Growing Viscoelastic Shell. Consider a point with coordi- 
nates ~i and z, which is generated at time t = ~*(p), where p = {~i, z}. At ~*(p), the dis- 
placements at points on the coordinate surface with coordinates ~i are ui* = ui(~*(p), p0), 
w* = w(~*(p), p0), where p0 = {~l, ~2}, with ui the displacement along coordinate axis • and 
w the additional shell deflection (displacement along the normal to the coordinate surface). 
If t ~ ~*(p), the displacements of this point on the coordinate surface are ui = ui(t, p0), 
w = w(t, p0). If a material particle with coordinates p is unstressed at the time of genera- 
tion �9 *(p), the strains there for t ~ ~*(p) can be found by means of the modified Kirchhoff- 
Love hypothesis: 

eli ~ Ael 7 -- zA%ij, 

Aei j  = eli( t ,  po) __ eij(~*(p), po); AXij = %i7(t, 9o) __ Xi.i(T,(O), p o ) .  ( 2 . 1 )  

where Aeij = eij(t, p0) _ eij (~,(p),p0); AXij = Xij(t, p0) _ Xij(T*(O), p0). 

The strains eij, the curvatures, and the torsion Xij of the coordinate surface S are de- 
fined by expressions from shell theory [4]. The increments Aeij, AXij should satisfy the equa- 
tions of continuity for the deformation of surface S, which in the case of small deflections 
take the form 
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-- (AgAezz), i -]- A,i~,iAeH -~- it 2 Al,zhe~2 -- O, 

(ZlhXli), 2 -- (A25%i2), t -- Ai,2A)~22 -- A2,tA%12 -~- 
I ~ 2172 

2 V~[ . (A2Ae12) ,  --(A1AeI1), 2 @ A 1 , 2 A e 2 2 - ~ A 2 ' 1 A e 1 2  ] =0 ,  

- R :  ~ ~ § A1A, 2 0a - ~  [(A2ae22),t - -  (AxAqz),2 - -  A2,tAell - -  AI,2Aex2] § 

0 i 
~ 2  {--~22 [(A1Aell)'2--(A2Ae12)'l-- Al'2Ae22 --7 Ae'IAel2]} =0, -~- A1A2 

w h e r e  h i  a n d  R i  a r e  t h e  Lame c o e f f i c i e n t s  a n d  r a d i i  o f  p r i n c i p a l  c u r v a t u r e  o f  S ;  t h e  s u b s c r i p t  
a f t e r  t h e  comma d e n o t e s  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  t h e  c o r r e s p o n d i n g  c o o r d i n a t e  ~ i .  

I n  p a r t i c u l a r ,  t h e  e q u a t i o n s  o f  j o i n t  s t r a i n  a m o u n t  t o  a s i n g l e  e q u a t i o n  f o r  a s m o o t h  
shell (A i = A 2 = i) 

I i 
Ae.,~,, + aq, , , l t  --  2,',q~,1~ _ . a  [~' (t, po) _ .., (~. (0), po)],~ _ ~ [~, (t, pO) _ ~,.('~* (0), P~ 

where 

A ~  = [ .  (,. r, o) - u I (.~. (r~), po)],~ _ ~ f~, (~, ,~o) _ w (.~* (r,), r,~ 
1 

A% = [ ~  (t, f,o) _ ~, (.~, (~,), po)],~ _ ~ [~ (t, ~,o) _ ,, (.~, (o), pO)], 

2 A ~  = [ h  (~, o ~ - ~ (~* (~'), po)],~ + [~,~ (t, o ~ - ~,~ (-~, (p), oo)],~. 

The equations of equilibrium for the expanding shell are as for a nonexpanding one [4], 
but it is necessary to bear in mind that 

~+(t,~o) 

Nil (t' o0)= f (~ll(t--/@2)dz . . . . .  
z_(t,0 ~ 

z+(t,o~ 
g . ; %0 ..... 

~_(t,o ~ 

where z+(t, p o ) ,  z_(t, p0) are the coordinates of points belonging to the inner and outer sur- 
faces of the shell as measured along the normal to S. 

For a thin-walled shell, one usually assumes that 

~ + (t,o ~ ,%(t,~, ~ 

Nij (t' p~ ~ ~ aijdz' Mij  (t, P~ ~ ~ (Yij zdz" 
~_(t,O ~ ~_(t,O ~ 

The relations between the stresses and strains are taken in the form 

(qi ~ AilliSii @ Aii22822, (122 ~ A22tisii @ A2222e~2, (~i2 ~ Ai~i2~12, 

where [ 3] 

t 

Aijhl~hl = Eijhl (t -- T* (p)) 8hl (t, p) -- .f Rijhi~(t -- T* (p), T -- T* (p)) ehl (% p) dT. 
~*(p) 

To derive the forces Nij and Mij, it is necessary to calculate integrals for the form 

~+(t,o ~ [ t ] 
z (t,o ~ ~*(o) 
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We 

where 

substitute from (2.1) and perform some transformations to get 

o r = Ei.ihzF (t, pO) eh z (t, pO) __ 

- z~h~s (t, o ~ x~ (t, pO) + 

~+(t ,o  ~ , 

~+(' ,o  ~ �9 

Eijhl (t  -- (p)) ehl (p), - -  T* (~, pO) dz 

~_(t,o ~ 

z+(t,o ~ 
y .  (t --  x* (p)) (T* pO) zdz - -  E~jht ~hl (p), 

,_(t ,o ~ 

- J .i % ~ ( ~ - * * ( P > ' ~ - ~ * ( ~ ) ) {  " . , ( ~ ' p ~ 1 7 6  
z_(t,oO) T*(o) 

- [z~, (~, pO)_ x~ (~* (p), po)]q ~a~,  

( 2 . 2 )  

*+(t,p ~ ~+(,,o ~ 

~_(t,o ~ ~._(t,o ~ 

A s  

OL( t ,  ~) 
B ( t , x ) = .  o ,  " L (t, x).= E (x) -- r (t, x) 

[E(~) is the modulus for elastic instantaneous deformation, T(t, T) is the 
T(t, t) = T(x, x) = 0], we write 

relaxation measure 

One can similarly 

Then (2.2) becomes 

~+(t,o ~ t 

Y Y o Bijht (t - -  ~* (p), i; --  I:* (p)) ehz ('~* (p), pO) a , a ,  = 
�9 _(t,o ~ ~*(o ) 
z+(t,p ~ 

= { ehl (x* (p), pO) [Eijhl (t - -  "r* (p))-- Lii~l (* - -  "r* (p), 0)] dz. 
~_(t,p ~ 

represent the same integral containing X k ~ , ( ' r * ( p ) ,  p~ 

~+(t ,p ~ 

_ 5 ~_(t,po) ~*(p) 

~+(t,~ ~ 
- S  

~_(t,o ~ 

d = EijhzF (t ,  p~ pO) __ Ei jk lS  (t, pO) %kl (t, pO) ._. 

t 

%~, ( , -  ** <P), �9 - ~ *  (p))['~i (~, o ~ - ~z~, (~, p~ d~d~ --  

L (t - -x* (p), O) [em (~* (p), pO) _ zXkl (x, (p), pO)] dz. 

( 2 . 3 )  

It is readily shown [2] that 

z+(t,p ~ t 

where 

[~( o) t,  "r)ehl (% pO)___~(1) (t, x) %hl (% PO) 1 d'r, ijhl k~ ' i jkl  

R(v)ijh~ (t, ~) = S /~m (t -- x* (p), ~ -- ~* (p)) s ('~* (p)) az (~* (p)), ? = o.i; 

~t (P) 
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and T ,(p0) is the instant of generation for the material particle on S with coordinates ~i. 

We finally get (2.3) as 

_ ~(o) (t, t, po) eh z (~, ,~ ~ _ ~ 
" - -  ~ { j k l  

~(~o) 
o Z(o> (t, ~, v ~ ~h~ (~, o ~ - or ~ ] ~j,a -~Z(~) (t, .~, ~o)z~l (~, ~o) d~, 

where 

(2.4) 

L(v) (t pO) S Li jh t  (t - -  ~, x - -  ~) z "r (~) dz (~), ? ~ 0,t. "~jhl ~ ' X, = 

Cjo o) 

With t:he symbols 

z(r) (t, t, i~ ~ &z (t, p o ) _  
ijhz 

we rewrite (2.4) as 

t 

S o ~(~) (t, ~, o ~ l~  (~, o ~ a~-= Z~'2jh, 

,~'(o ~ 

_ 7(0) e . .  -- ~(I) ~, 
J - -  "u~jhl  n t  i j k l ~ ' h l "  

The f o r c e s  and  moments  c o r r e s p o n d i n g l y  a r e  

(? = O, i, o),. 

~rl l( t ,  pO)=Z(O) e +~(0 )  e_ - -~( I )  7 - -~( I )  
- -1111 11 ~ 1 1 2 2  Z2 ~1111 '~11  ~ 1 1 2 2 ~ 2 2  ' """' 

N12(t, po) Z(") ~ 7(1) 
= ~ 1 2 1 2 ~ 1 2 - - ~ 1 2 1 2 ~ 1 2 ~  

M n( t ,  po)=7(1)~e + Z  (1) e Z(2) ~ .~Z(2) v 
U l l l l  I I  1122 22 --'= l l l l J ~ l l  i 122 '~22  ' " " " ' 

M 1 2 ( t ,  O\ 7 ( 1 )  e ~ ( 2 )  . P 1=L121212 L1212%12 

The b o u n d a r y  c o n d i t i o n s  a t  t h e  e d g e s  o f  t h e  s h e l l  a r e  w r i t t e n  on t h e  b a s i s  o f  t h e  p o s -  
s i b l e  c h a n g e s  i n  t h e  b o u n d a r i e s  o f  t h e  r e g i o n  o c c u p i e d  by S. The s o l u t i o n  t o  t h e  e q u a t i o n  
s y s t e m  s a t i s f y i n g  t h e  c o r r e s p o n d i n g  b o u n d a r y  c o n d i t i o n s  a t  t h e  e d g e s  d e s c r i b e s  t h e  u n p e r -  
t u r b e d  m o t i o n .  

3. Equations of Perturbed Motion for an Expanding Viscoelastic Shell. We assume that 
the initial curvature of the coordinate surface, the external loads, and so on have small 
perturbations 6w ~ 6qi, 6qz; the motion due to these is called perturbed. The displacements 
and the internal forces in that motion differ from those in the unperturbed case by the per- 
turbations 6ui, 6w, 6Nij, 6Mij, 6Qi. 

The equations of equilibrium and joint deformation in the coordinate surface under per- 
turbed motion have the same form as for the unperturbed case if one replaces Nij, Mij, Qi, 
heij, 5Xij by Nij + 5Nij, Mij + 6Mij, Qi + ~Qi, Aeij + 6heij, AXij + 6hXij; from these we 
subtract the equations corresponding to the unperturbed motion to get equations for the un- 
perturbed motion in a growing shell in relation to permanently acting perturbations. 

We further assume that the dimensions of the shell tend to a limit as time passes; as 
regards the elastic moduli Eijks and relaxation kernels Rijks ~), we assume that they 
satisfy 

lira Eiihz (t) = E~ = ednst, lim BijhZ (t,  ~) = Bi5~l (t - -  ~), 
"6-~ oo 

oo 

0 
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If the external loads are sufficiently small and also tend to limiting values over time, 
it can be shown that the displacements in the unperturbed motion ui(t, p~ w(t, p0) and the 
forces Mij(t, p0), Nij(t, p0) tend to the constant quantities ui(p~ w(p~ Mij(P~ Nij(Pa). 

To examine the stability over an infinite interval, we use linearized equations for the 
perturbed motion. On solving the problem in displacements, these equations may be written 
in operator form as 

A S u  = ~ ,  8u = {Sui ,  8w} ,  

w h e r e  A i s  t h e  o p e r a t o r  i n  t h e  l i n e a r i z e d  t r e a t m e n t  a n d  5 f  i s  a v e c t o r  d e p e n d e n t  on t h e  i n i -  
t i a l  p e r t u r b a t i o n s  6w ~  6 q i ,  . . .  

The  s h e l l  w i l l  b e  s t a b l e  o v e r  an  i n f i n i t e  i n t e r v a l  ( L y a p u n o v  s t a b l e )  i f  t h e  e x t e r n a l -  
l o a d  p a r a m e t e r  d o e s  n o t  e x c e e d  t h e  v a l u e  c o r r e s p o n d i n g  t o  t h e  d e g e n e r a c y  c o n d i t i o n  f o r  o p e r -  
a t o r  A ~  w h i c h  i s  t h e  l i m i t  f o r  A. O p e r a t o r  A ~ i s  f o r m u l a t e d ,  a s  i n  t h e  e l a s t i c  c a s e ,  b y  
r e p l a c i n g  t h e  d i s p l a c e m e n t s  i n  t h e  u n p e r t u r b e d  m o t i o n  by  t h e i r  l i m i t i n g  v a l u e s  u i ( p ~  w ( p ~  
w h i l e  t h e  i n s t a n t a n e o u s  e l a s t i c  m o d u l i  E i j k ~  ~ a r e  r e p l a c e d  by  t h e  l o n g - t i m e  o n e s  

oo 

0 

It is particularly important to examine the stability of the unperturbed motion over 
a finite interval in order to evaluate the behavior of an expanding viscoelastic shell be- 
cause of the elevated sensitivity to any imperfections and especially to the initial curva- 
tures of the median surface. Here there are various possible formulations. We consider two 
of them. 

i. We are given a finite time interval [0, T]. We have to find the critical values 
of the parameters determining the growth (for example, the growth rates, the law followed 
by the load over time, etc.) for which the maximal values of the perturbations (such as 6w) 
do not exceed the preset value A: 

sup l 8w (t, po) ] < A,[t ~ IO, r] .  
O o 

2. The limiting permissible values A for the displacement perturbations are known. We 
have to find the time t,, called the critical time, when the maximal displacement perturba- 
tion first becomes A. 

4. Variational Formulation. In some cases, it is best to conduct the study from varia- 
tional principles. We introduce the Lagrange functional [5] 

r E~jhz (t - -  x* (p)) P) %z (t, (t, p) (p), x - -  ~* E = ~. eij (t, p) - -  8 U Rijkl (t - -  x* (p)) 8hl (% p) d'r d V  - -  I I ,  

V(t) x*(p) 

where H is the potential of the external loads: 

I I =  ,I (qiu'~-q3w)AIA2d~Id~2-~ ~ (Nl~Ui~-Qlw~-l~111~ -~ S (~V2iui-~Q21~-~i~I22(o2) Ald~ 
s(o r,(o r2(, ) 

with Nij*, Qi*, Mii* the external forces applied to the contour ri, while ~i are the angles 
of rotation of the normal to S on Fi. 

The condition for the functional to be stationary is that the first derivative with re- 
spect to the displacements is zero at the current instant: 

~E= 0 (4.1) 

We represent the displacements as expansions in terms of a complete set of functions 
satisfying the geometrical boundary conditions, and from (4.1) we get a system of decision 
equations in the expansion coefficients, which are functions of time. 
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When one examines the stability for the unperturbed motion of a shell subject to con- 
servative loads, one formulates the functional E*, which is derived from E by replacing the 
displacements ui and w corresponding to the unperturbed motion by ui + 6ui, w + 6w. The ex- 
ternal perturbations are incorporated by introducing instead of the functions w~ qi, q3, 
Qi*, ... the expressions w ~ + 6w ~ qi + 6qi, q3 + 6q3, Qi* + ~Qi* ..... so E* can be repre- 
sented as 

E,= E+6E§ . . . .  

where 6E and 62E are terms containing respectively the first degrees and the products of the 
perturbations ~ui, 6w, ... 

As we have (4.1), we write 

E* : E ~ 5~E ~-... 

The stationarity condition for E* is as before, 

6E* = O, 

where the term corresponding to the unperturbed motion is not varied. 

6(62E § . . . )  = o.  

that the first variation is zero: 

Then 

(4.2) 

From (4.2) we can derive equations and boundary conditions for the boundary-value prob- 
lem corresponding to the perturbed motion in terms of perturbations. 

5. Expanding Cylindrical Shell. Consider a circular cylindrical shell whose expansion 
occurs along the generator, while the material can also expand symmetrically with respect 
to the median surface. The shell is subject to its own weight and to an axial compressive 
load P(t), which is uniformly distributed along the free edge. The shell has an external 
permanently acting perturbation in the form of an initial axisymmetric curvature of the median 
surface, which is specified as 

w ~  ~  c-}- c+Zcx ~..= aix ~ exp( - -~ ,xx) ,  

where c, a i, and I are constants. 

The coordinate x I is reckoned along the generator for the median surface, while the origin 
lies at the lower end of the shell. 

The strains in axisymmetric deformation for small deflections are given by 

~ n ( t ,  p) = u l , l ( t ,  z l )  - -  u l , l ( z* (p ) ,  z~) - -  [w , l l ( t ,  z~) - -  w , n ( ~ * ( p ) ,  x l ) ] z ,  

t 
%~ (t, p) = - -  --ff [w (t, x )  - -  w (~* (p), 5 ) 1 ,  

where ~*(p) is the instant of generation for a material particle having coordinates x I and z. 

The shell material is isotropic, viscoelastic, and inhomogeneously aging, with the Pois- 
son ratio D constant over time. Then 

! I 

where 

t 

E~ = E (t - -  T* (p)) ~ (t, x l ) - -  ,[ R ( t - - ~ *  (p), ~ - -  T* (p)) ~ (Z, xl )  dg. 
z*(p) 

Example_!l. Consider a shell of constant length s At the initial instant (t o = t) the 
thickness is constant at h 0 . During the subsequent growth, the expansion is symmetrical with 
respect to the median plane, with the thickness remaining the same at all points, being h(t). 
The material is viscoelastic and does not show aging, where the expressions are 
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E(t) = Z = const, R(t, x) = "tc exp (--?(t  - -  x)). 

T h e  s h e l l  i s  c o m p r e s s e d  by  a n  a x i a l  l o a d  P ( t ) .  The  e d g e s  h a v e  h i n g e d  s u p p o r t ,  w h i c h  
p r o v i d e s  f o r  a m o m e n t - f r e e  s t a t e  o f  s t r a i n  o n  c o m p r e s s i o n  o f  a n  i d e a l  s h e l l .  

We a s s u m e  t h a t  t h e  m e d i a n  s u r f a c e  h a s  a s m a l l  a x i s y m m e t r i c  c u r v a t u r e  w ~  = f ~  
( m ~ / ~ ) ] x l ;  t h e  e q u a t i o n  i n  t e r m s  o f  t h e  a d d i t i o n a l  d e f l e c t i o n  w ( t ,  x l )  i s  w r i t t e n  a s  

t 
0% (~, z~) D (t) Otw (t' x l) -- ~ +ff--~ L(2) (t, T) d'c-~- ~ w  (t, x l) -- 

ox~ o o~ 
t 

' S ~ - ~ -  7~" 
0 

( 5 . 1 )  

where 

L (2) (t, T) = 
h 3 (z) 

t2 ( t  -- p2)  co (t ,  ~);  L (~ ( t ,  T) = h (T) co ( t ,  "0; 

Eh. 8 (t) 
to (t, x) = E - -  C [l - -  exp (--  T (t - -  x))]; D (t) - -12 (l _ pz)" 

We seek the deflection w(t, xl) as 

w(t, xl) = ](t) [sin (mall) ]x 1. ( 5 . 2 )  

Then from (5.1) we have 

Here 

t 
t ~[  m2~20L(2)(t,T) 12 OL(~ ( 5 . 3 )  

[ t - - a ( t ) l / ( t ) - - ~  lZ O~ + m~zt ~ O~ 
o 

m2n 2 Eh(t) P(t)  
N ( t ) = ~ y ' - D ( t ) +  m2~2Rz ; a ( t ) - -  N(t)" 

The motion corresponding to the moment-free state is called unperturbed. Equation (5.3) 
describes the change in the deflection amplitude in the perturbed motion. 

We assume that lim h(t)=h~,limP(t)=P~ and from (5.3) it is evident that the unperturbed 

motion is stable at infinity in relation to perturbation f0 if the following conditions are 
obeyed [6]: 

a f t ) < t  v t ~  o, ~ t  < 1 '  

where 

me ~ ~ E it h~ f ~ 
art = P~/Ntt  , N l t  -- +l~ Dtt +'m2~2R ',. , 

Eft ha  
Elt = E - - C ,  Dl t  -- t 2 ( 1 - -  2 ) -  

We f u r t h e r  c o n s i d e r  a n  e l a s t i c  s h e l l  (C = 0 ) .  E q u a t i o n  ( 5 . 1 )  i n  t h a t  c a s e  i s  w r i t t e n  
as  

t 

D (t) 04w (t, xl) __ E ~ h 2 (T) h ('Q a~w (x, xl) dT -~- Eh (t) w (t, Xl) - -  

ox 1' ~ (t r~ ~1 o ox~ ~ 
f 

- -~-~- ih)w(~,xl) d~+ P(t) 
o 

(5.4) 
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(an overdot denotes a derivative with respect to time x). Then (5.4) differs essentially 
from the analogous equation for a nonexpanding elastic shell. 

From (5.2) and (5.4) we get 

_ fo [ !  ~(~)/ ' (~)d-~].  
I (0 + 1o t - -  ~ (o--) exp t ---- ~ i~) P (~) 

( 5 . 5 )  

We assume that the compressive force varies in time as follows: 

P(t) = • ~ (t). 
Then for example for a plate (R ~ ~) at time t corresponding to the thickness attaining 

h(t) = s we have from (5.5) that ($ = (f(t) + f0)/f0) 

1 /  1--r (t) a (0) 
, /  <~ ( t )  - ' f o r n = i  ~ =  ( l - - a (O) )  a' 2 ' 

s ~ ( t )  

for n = 3 ~ = 1 - - ~  (0i 22(z-a(t)) ' a (t) = a (0). 

F i g u r e  1 s h o w s  t h e  v a r i a t i o n  o f  ~ w i t h  a ( O )  f o r  a n  e x p a n d i n g  p l a t e  ( s o l i d  l i n e s )  a n d  
a n o n e x p a n d i n g  o n e  ( d a s h e d  c u r v e s ) .  I n  t h e  l a t t e r  c a s e ,  ~ i s  d e f i n e d  b y  

.: = tl(l  - a(t)). 

Figure 2 shows the dependence of $ on q = h2(t)/h2(O) for n = I for a growing plate 
(curve i) in the case ~(0) = 0.5. For comparison, we show the dependence of $ on ~ for a 
nonexpanding plate with the same initial a(O) (curve 2). 

Figures i and 2 indicate that the deflection in certain cases of a growing plate may 
be considerably larger than that in a nongrowing one even for the elastic case and elastic 
constants unvarying over time. Analogous results apply for shells. The effects of the growth 
are even more pronounced when the material is viscoelastic. 

Example 2. Consider a circular cylindrical shell whose lower end is rigidly clamped, 
while the other edge is free. To analyze the axisymmetric deformed state, we use Lagrange's 
variational principle. Then (4.1) becomes 

t - ~  l J' ~(o.) (t, t, =1) ~'1: i t, ~1) - �9 . ~(~) (t, ~, ~1) w,ll  (~', xl) ~ 6~, . .  (t, ~ )  + 
"h(xO 

F t 

L ~:('i) 

L ( ~  t, xx) ul, : ( t , x l ) -  * 

:1 (~1) 

z(t) / i(t) \ 
-- ! t p(t)-[- ~ ph(t' x:) )[w'i(t' xl)-~-w~:(xl)] Sw'~ (t' x:)dxi=O' 

l L (0) (t ,  t, x i )u : ,  l (t, xl)  - -  "r xl)  ul,: Xl) 
t - -  l ~  ~ . 

" "q(~O 

: ] } 0 ~(o> (t, ~, "1) w (~ ,~0 a~ 6~,,: (t, x 0 a~l + Z ~(o> (t, t, =1) w (t, =1) - �9 ~" (5.6) 
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z(t) 
+ j" ph(t,x)Su x( t ,z l )  az +P(t) Su (t, z)lxi=l(t)=O. 

0 

Here s is the length of the shell at time t and p is the density of the material. 

The deflection w and the axial displacement u i are put as sums: 

(5.6) 

k 

i = 2  ~=i 

We determine the coefficients ai(t), bj(t) by means of (5.6), in which the integrals with 
respect to the length are calculated by means of Simpson's quadrature formula, while the in- 
tegral Volterra equations of the second kind in ai(t), bj(t) are solved numerically by the 
Krylov-Bogolyubov method [7]. 
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We further consider a shell growing only along the generator (the wall thickness h is 
constant over time and along the length). The material expands at a constant rate v 0 over 
the interval [0, T], after which the length s remains unchanged. We assume that the shell 
is subject only to a uniformly distributed axial load P(t) = P0 = const applied to the free 

edge. 

We assume that 

0 
R ~t, T) = - -  ~-~ {0) (T) [ l  - -  e--7(t-- 'c)]}, E (t) = E 0 = c o n s t ,  

where m(T) is a function characterizing the aging. We take this function as 

(o(z) = Co + Aoe - ~ ,  

where Co, A0, 6, and 7 are constants. 

Figures 3-6 show calculations for a shell with the following characteristics: R/s 0 = 
i, h/s 0 = 0.04, C0/E 0 = 0.075, A0/E 0 = 0.75, P0/E0h = 2.5.10 -4 , y = 0.02 day -I, and ~ = 0.025 
day -I 

Figure 3 shows the positions of the generators for the median surface in unperturbed 
motion (w a E O) at the times 7t = 0.4, i, 1.4, 1.7, 2, and 3.3 (curves 1-6). 

The growth rate is v0= 0.01 day -I, T= 100 days. The negative values for the deflection cor- 
respond to the median surface being displaced toward the exterior normal. For comparison, 
Fig. 4 shows the position of the generators for a nongrowing shell (length s loaded by the 
same P0 (curves 0-4 corresponding to 7t = 0, 0.4, 0.8, 1.2, 1.4). Figures 3 and 4 show that 
the growth has a substantial effect not only on w but also on the variation with this over 
the length. 

Figure 5 shows the variation in 6w along the length for various instants during the 
growth. The external perturbation was taken as an axisymmetric curvature of the median sur- 
face of the form w~ = O.Olx 2. Curves 1-6 are for 7t = 0.4, i, 1.4, 1.7, 2, and 3.3. 
The variation in the deflection perturbations in time and along the length are notable. 

Figure 6 shows curves illustrating the dependence of the dimensionless critical time 
7t, on the growth rate for two limiting values of the deflection perturbation: A l = 4.10 -s 
(curve i) and A 2 = 8"i0 -S (curve 2), which show that the growth rate has a considerable ef- 
fect on 7t, and thus on the stability. 
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